Alcohols - Mark Scheme

Q1.

Question number	Answer	Additional guidance	Mark
(a)(i)	 peak in the range 3750 - 3200 cm⁻¹ and O-H (stretching) bond in alcohols 	Must identify the bond and give the wavenumber range	1
		Allow peak at ~3375 cm ⁻¹	

Question number	Answer	Additional guidance	Mark
(a)(ii)	not possible - All three contain the same bonds or possible - the fingerprint regions differ/by comparing the spectra to reference spectra	No mark for unjustified answer	1

Question number	Answer	Additional guidance	Mark
(b)(i)	(all show) parent/molecular ion peak at 74	Allow peak furthest to the right/highest m/z peak at 74 Do not award just 'peak at 74'	1

Question number	Answer	Additional guidance	Mark
(b)(ii)	• fragment ⁺ CH ₃ CHOH = 45 (1)		3
	• fragment +CH ₂ OH = 31 (1)		
	• fragment $^{+}(CH_3)_2COH = 59$ (1)	Ignore missing charge on fragments	

Question number	Answer		Additional guidance	Mark		
(c)(i)	Organic compound used	Name of oxidation product	Structural formula of oxidation product		Allow displayed or skeletal formulae 1 mark for 2 correct names and 1 mark for	3
	A	Butanone and	CH₃CH₂COCH₃	(1)	each correct formula	
	В	Butanal (1)	CH ₃ CH ₂ CH ₂ CHO	(1)		

Question number	Answer		Additional guidance	Mark
(c)(ii)	An answer that makes reference to the following points: • reagent: Benedict's/Fehling's	(1)	Allow Tollens' or iodine + alkali	3
	(oxidation product of) compound A: no change	(1)		
	(oxidation product of) compound B: (Benedict's/Fehlings test) red precipitate.	(1)	(Tollens' reagent) silver mirror with (oxidation product of) B. No reaction with (oxidation product of) A	
			(iodine + alkali) yellow precipitate (iodoform) with (oxidation product of) A. No reaction with oxidation product of B	
			If (butanoic) acid in (c)(i), allow reagent: sodium carbonate/sodium hydrogencarbonate (solution) Observations: (oxidation product of) compound B: bubbles/fizzes	

Q2.

Question number	Answer	Mark
	CH ₃ CH ₂ —O—H CH ₃ CH ₃	1

Q3.

Question number	Answer		Additional guidance	Mark
(a)	KBr/potassium bromide and (50%) sulfuric acid	(1)	Both needed for M1 Ignore acid concentration Allow HBr (dry) PBr ₃ /Phosphorus(III) bromide PBr ₅ /Phosphorus(V) bromide	2
	(heat under) reflux	(1)	Do not allow just heat M2 conditional on correct or near correct M1	

Question number	Answer		Additional guidance	Mark
(b)	C-Br dipole reversed	(1)	Allow in any order	3
	OH ⁻ to C arrow reversed	(1)		
	lone pair missing (from OH-)	(1)		

Question number	Answer	Additional guidance Mark
(c)	KOH/potassium hydroxide (ethanol(ic)/alcohol(ic) and heat (under reflux)	1) Allow NaOH/sodium hydroxide Ignore OH ⁻ / alkali 1) M2 dependent on M1